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Abstract. One of the most appropriate approaches for determining the
efficiency of decision-making units is Data Envelopment Analysis (DEA).
When data is described uncertainty and vaguely, the necessity of using
fuzzy theory appears. In this study, new approaches are proposed to solve
the fuzzy DEA model. The fuzzy DEA model is first transformed into an
interval DEA by the nearest interval approximation of a fuzzy number.
The proposed approach is based on the marked distance for comparison
and ranking of efficiency. Also, we study fuzzy DEA models, which use
possibility and necessity to measure fuzzy events. The necessity measure
estimates the amount of necessity for each fuzzy set. In this research, be-
cause the possibility measure and necessity measure are each other dual,
comparing the results of their efficiency, it is more reliable to determine
efficient units. We give numerical examples to examine the proposed ap-
proaches and compare the models.
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1. Introduction

One of the most appropriate approaches for determining the efficiency of decision-
making units is Data Envelopment Analysis (DEA). In recent years, DEA has been
used to assess the performance of institutions and other common activities in eval-
uating the organizations and industries such as the banking industry, post offices,
hospitals, educational organizations, power plants, refineries, and so on [1]. In the
standard DEA models, input and output data are examined only on the condition
of certainty. Cooper et al. [2] and Zhu [3] employed Data Envelopment Analy-
sis technique for uncertain data. Fuzzy DEA solutions are divided into four main
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classes: tolerance approach, α-cut approach, ranking approach, and possibility ap-
proach. The tolerance approach can be found in Sengupta [4]. Kao and Liu are
among the pioneers of α-cut approach. The efficiency results are defined as intervals
[5]. Saati et al. [6] employed α-cut approach as an interval programming approach
to transforming the form of the fuzzy CCR model definitely. Then they solved it
by modifying an appropriate variable. The application of DEA has proven to be in-
valuable in assessing the efficiency of decision-making units across various industries
and organizations. By adopting DEA, institutions such as banks, post offices, hospi-
tals, and educational organizations can gain valuable insights into their performance
and identify areas for improvement. Moreover, the advancement of DEA techniques
has led to the emergence of fuzzy DEA solutions, allowing for the consideration of
uncertain data. This opens up new possibilities for accurately evaluating efficiency
in situations where there is a degree of ambiguity or imprecision. By incorporating
fuzzy DEA approaches such as the tolerance, α-cut, ranking, and possibility ap-
proaches, decision-makers can obtain a more comprehensive understanding of their
organization’s performance. These approaches offer flexible and robust methodolo-
gies to handle uncertain data, enabling a more accurate efficiency assessment. The
main goal of Mishra et al.’s article in 2023 introduce a new sequence of linear posi-
tive operator, i.e., α-Schurer Durrmeyer operator and their approximation behavior
based on function η(z), where η is infinitely differentiable on [0, 1], η(z) = 0, η(1) = 1

and η
′
(z) > 0 for all z ∈ [0, 1]. Further, they calculate central moments and ba-

sic estimates for the sequence of the operators. Moreover, they discuss the rate of
convergence and order of approximation in terms of modulus of continuity, smooth-
ness, Korovkin theorem, and Peeter’s K-functional [7]. Mishra et al. [8] prove the
existence and uniqueness of common fixed point for Ciri’c-Riech-Rus contraction
mapping in the setting of quasi-partial b-metric space. The ambiguity of a fuzzy
number is a characteristic that plays a central role in this article. In most fuzzy
DEA solutions with α-cut approach, the problem is transformed into an interval lin-
ear programming problem. Despotis and Smirlis [9] evaluated interval or boundary
data in DEA, presenting a three-class classification of efficiency. Wang et al. [10]
developed a new couple of interval DEA models to deal with imprecise data, such as
interval data, sequential preference-based data, and fuzzy data. Their interval DEA
models are easier and more comprehensible than Cooper’s imprecise DEA model
[2]. Furthermore, their interval DEA models use constant and uniform generation
boundaries as a benchmark to measure the efficiency of all DMUs, which makes it
more reasonable and reliable than Despotis and Smirlis’s interval DEA models. In
addition, their approach with sequential preference-based data seems more reason-
able than Zhu’s Method [11]. The notion of fuzzy set theory has not been directed
over medical diagnosis. There are some added applications, such as image process-
ing, pattern identification, and many medical devices. Research paper by Sharma et
al. [12] introduced a new mediative fuzzy ranking technique as the fuzzy extension
in decision making. The proposed mediative fuzzy logic-based technique is more rel-
evant and applicable to incomplete and doubtful situations or some contradictions
present in the expert knowledge. The value of the contradictory degree for media-
tive fuzzy sets used in the extension principle is defined. The proposed mediative
fuzzy ranking method is easily implemented in the medical field, and the proposed
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mediative fuzzy extension-based measured technique is useful to medical experts
and doctors in many decision-making situations. Entani et al. [13] considered the
efficiency of DEA both optimistically and pessimistically. In their DEA models,
an interval is made by using optimistic or pessimistic efficiencies. However, their
model has a significant defect, which is that it does not consider some input and
output data because only the data of one input or one output of DMU is evaluated,
and the rest of the data is not used [13]. Mishra et al. [14] define the weighted
mean summability method of double sequences in intuitionistic fuzzy normed spaces
(IFNS) and obtain necessary and sufficient tauberian conditions under which con-
vergence of double sequences in IFNS follows from their weighted mean summability.
this study also reveals Tauberian results for some known summation methods in spe-
cial cases. Understanding and addressing the ambiguity inherent in fuzzy numbers
is essential in the realm of fuzzy DEA. Researchers have made significant strides in
advancing fuzzy DEA solutions by utilizing the α-cut approach, which transforms
the problem into an interval linear programming problem. The work of Despotis
and Smirlis [9] provides a valuable framework for categorizing efficiency based on
interval or boundary data, offering insights into the assessment of DMUs. Wang et
al. [10] have further enhanced the field by developing more simpler and more com-
prehensible interval DEA models that accommodate imprecise data. Their models
introduce constant and uniform generation boundaries as benchmarks for measur-
ing efficiency, resulting in a more reasonable and reliable approach compared to
previous models. Mishra et al.’s research emphasizes the basic notions regarding
the Neutrosophic Fuzzy Sets (NFSs) with operations and their applicability in the
medical diagnostic process. They developed a neutrosophic fuzzy set-based Monte
Carlo simulation technique for the decision-making in medical diagnostic processing
fuzzy environment. In this work, they managed the waiting time and idle time of
the doctor during the treatment process of the patients. The various parameters
are stated as linguistic variable in the form of NFSs. The developed neutrosophic
Monte Carlo simulation technique (NMCST) is extended in the planning strategy of
a doctor to treat the patient in a neutrosophic fuzzy environment [15].

Incorporating sequential preference-based data, Wang et al.’s approach demon-
strate a higher level of reasonability compared to alternative methods proposed by
Zhu [11]. By considering both optimistic and pessimistic efficiencies, Entani et al.
[13] shed light on different perspectives of efficiency evaluation. However, their
model’s limitation in evaluating only a subset of input or output data should be
addressed in future research. The delving into the intricacies of fuzzy DEA and ex-
ploring these advancements can contribute to understanding and proficiency in the
field. By embracing and further developing these methodologies, can make valuable
contributions to the field of fuzzy DEA, enabling more accurate and comprehensive
assessments of efficiency in real-world decision-making units. Zhou and Xu [16] found
out the researching on the theoretical development and practical applications of the
FDEA is valuable, because it has been successfully applied in many factual fields;
the results have been shown it is suitable for the different real fields for efficiency
analysis and alternative improvement. Also, FDEA can effectively address some real
decision-making issues based on the relative efficiency principle and provide quan-
titative improvement suggestions. Sharma et al. [17] stated that in the real world,
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not all the parameters, i.e., cost, demand, and supply related to the Transportation
Problem (TP) need to be known precisely. One of the recent ways to tackle the im-
preciseness is the Fermatean fuzzy set (FFS), an extension of the Pythagorean fuzzy
set (PFS). First, they established a score function for grading FFS in this research
paper. The main aim of their research article is to solve the TP in a Fermatean
fuzzy environment. To optimize the TP using Fermatean fuzzy parameters, they
presented an algorithm for three types of Fermatean fuzzy transportation problems
(ty-1 FFTP, ty-2 FFTP, and ty-3 FFTP).

The primary purpose of this study is to develop a new model of fuzzy DEA models,
which can define efficiency in an interval manner. Suggested approach can, such as
the alpha cut approach proposed by Saati et al. [6], the fuzzy arithmetic approach
proposed by Wang et al. [10], and many others, transform fuzzy DEA into a linear
programming problem. In other words, in this study, with a new approach, fuzzy
DEA can be converted into a linear programming problem. In order to compare and
rank the efficiency of DMUs, we present a symptomatic interval-based approach.
In 2011, Tawana et al. [18] provided a taxonomy and review of the fuzzy DEA
methods. they present a classification scheme with four primary categories, namely,
the tolerance approach, the -level based approach, the fuzzy ranking approach and
the possibility approach. they discuss each classification scheme and group the
fuzzy DEA papers published in the literature over the past 20 years. To the best of
their knowledge, this paper appears to be the only review and complete source of
references on fuzzy DEA.

Another class (for solving) of fuzzy DEA solutions is to use the theory of possibil-
ity. The possibility theory was first introduced by Zadeh [19] as an extension of the
theory of fuzzy sets. Dubois and Prade [20] further contributed to its development.
The possibility theory is an uncertainty theory devoted to managing the incomplete
information and is an alternative to probability theory. Most researchers use the
concept of α-cut to solve the possibility fuzzy programming problems, which can
be solved by converting it to interval programming and comparing the intervals.
Zadeh [19] introduced the possibility theory in modeling the conditions which are
confronted with uncertainty. In fact, this theory defines a measure called ‘possibility’
for a fuzzy space. The utilization of the “measure” concept in a space is excellent,
especially in possibility space which is much more extended than fuzzy space. By in-
corporating the possibility theory into fuzzy DEA solutions, researchers have opened
up new avenues for addressing complex problems with incomplete information. This
theory, which builds upon the foundation of fuzzy sets, offers a fresh perspective on
managing uncertainty. By embracing the concept of “possibility”, researchers can
navigate through the challenges posed by uncertain conditions and gain valuable
insights. The utilization of this theory expands the possibilities within the field,
unlocking the greater potential for finding effective solutions. So, whether you are
an aspiring researcher or a practitioner in the field, exploring the theory of possibil-
ity can enrich your understanding and empower you to tackle complex problems in
innovative ways. Embrace the power of possibility and let it guide you toward novel
solutions and valuable discoveries.

The rest of the current study is as follows: In the second section, we review the
concept of preliminary fuzzy set and some mathematical operations on them. We
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present the fuzzy DEA model and the most common conventional methods for solv-
ing fuzzy DEA models in the third section. In Section 4, we propose an approach to
solve the fuzzy DEA model and rank them, and also compare the proposed approach
with the conventional methods with the results in numerical examples. In section 5,
the extension of fuzzy DEA models is expressed in terms of the possibility measure
and necessity measure. Finally, we use a numerical example to express our idea
further. In these methods, we simplify the work and manage fuzzy numbers. The
structure of the study you are reading reflects a systematic approach to exploring
and addressing complex problems in the realm of fuzzy DEA models. By review-
ing the fundamental concepts of fuzzy set theory and mathematical operations, the
study establishes a strong foundation for understanding subsequent sections. As you
progress to the third section, you will discover common methods used to solve fuzzy
DEA models, allowing you to gain insights into established approaches. However, the
study continues beyond there. Section 4 introduces a novel approach that promises
to simplify the problem-solving process and provide meaningful comparisons with
conventional methods through numerical examples. The study also explores the
possibilities of extending fuzzy DEA models by incorporating possibility and neces-
sity measures, showcasing the breadth of potential applications. By delving into
the numerical example, you will witness the practical implications of these methods
firsthand. Embrace this journey of discovery, as it equips you with valuable knowl-
edge and innovative techniques for managing fuzzy numbers and solving complex
problems in the field of fuzzy DEA.

2. Preliminaries

Firstly, we review some of the basic concepts of fuzzy sets. Suppose that X is a
reference set with real numbers whose members are represented as x. Each fuzzy
subset A from X is defined by membership function µA : X → [0, 1] that relates
each member x from X to the membership degree µA(x) ; when µA(x) = 0, it can
be certainly said that this member does not belong to A.

Definition 2.1. (i) A fuzzy set ã on R is called a fuzzy number, if it satisfies the
following conditions:

(a) ã is normal, i.e., supx∈R µã(x) = 1,
(b) ã is normal, i.e., for all λ ∈ [0, 1],

µã{λx1 + (1− λ)x2} ≥ min{µã(x1), µã(x2)}.

(ii) A fuzzy number ã is called a fuzzy number L-R, denoted by (aL, aR, γL, γR)LR,
if its membership function is defined as follows: for each x ∈ R,

µã(x) =


L(a

L−x
γL ) x ≤ aL
1 aL ≤ x ≤ aR

R(x−a
R

γR ) x ≥ aR,

where aL ≤ aR, γL ≥ 0 and γR ≥ 0.

Definition 2.2. The general trapezoidal fuzzy number (GTrFN) Ã can be as Ã =
(a1, a2, a3, a4;h1, h2) in which a1 ≤ a2 ≤ a3 ≤ a4 and h1 ≤ h2 or vice versa (h1, h2 ∈
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[0, 1]). Then the membership function is defined as follows: for each x ∈ R,

µÃ(x) =


h1( x−a1a2−a1 ) a1 ≤ x ≤ a2

(h2 − h1) x−a2a3−a2 a2 ≤ x ≤ a3

h2( a4−xa4−a3 ) a3 ≤ x ≤ a4

0 x ≤ a1x ≥ a4.

In the above definition, if two heights h1 = h2, the general trapezoidal fuzzy
number will convert to a flat trapezoidal fuzzy number. Moreover, if h1 = h2 < 1 ,
we will have the flat trapezoidal fuzzy sub-number.

Definition 2.3. The general triangular fuzzy number (GTrFN) Ã, which is a special
kind of the general trapezoidal fuzzy number of (a2 = a3), and on the interval [a1, a3],

is Ã = (a1, a2, a3;h) in which a1 ≤ a2 ≤ a3 and (h ∈ [0, 1]. The membership function
of a general triangular fuzzy number is as follows: for each x ∈ R,

µÃ(x) =


h( x−a1a2−a1 ) a1 ≤ x ≤ a2

h( a3−xa3−a2 ) a2 ≤ x ≤ a3

0 x ≤ a1, x ≥ a3.

In Definitions 2.2 and 2.3, the abbreviations are the same. Please check them.

Remark 2.4. (1) If h = 1, we call a general triangular fuzzy number as a triangular
fuzzy number.

(2) If h < 1, we call a general triangular fuzzy number as a triangular fuzzy
sub-number.

Definition 2.5. The core of a fuzzy number Ã, denoted by Core (Ã), is defined as
follows:

Core(Ã) = {x ∈ R|µÃ(x) = 1}.

Definition 2.6 (See [21, 22]). The η-cut of a fuzzy number Ã, denoted by Ãη, is
defined as follows:

Ãη = {x ∈ R|µÃ(x) ≥ η} = [Ǎ(η), Â(η)],

where Ǎ(η) = inf{x ∈ R|µÃ(x) ≥ η} and Â(η) = sup{x ∈ R|µÃ(x) ≥ η}. Subse-
quently, the fuzzy ã is convex, if all of the η-cut sets are convex.

Suppose that Ã is a triangular fuzzy number and [Ǎ(η), Â(η)] is its η − cut. The

approximation of the nearest interval for Ã is a closed interval I(Ã) = [Ǐ , Î], in which

Ǐ =
∫ 1

0
Ǎ(η)dη and Î =

∫ 1

0
Â(η)dη [23].

Kushwaha et al.’s article in 2022 determined the degree of approximation of func-
tions belonging to the Lipschitz class and weighted class by using (N, p)(C, θ, β)
means of Fourier series and conjugate series of Fourier series which in particular
becomes (E, q)(C,α, β) [24].

Theorem 2.7. The approximation of the nearest interval for triangular fuzzy num-

ber Ã = (a1, a2, a3) is [a1+a2
2 , a3+a2

2 ].
6
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Proof. The membership function of the triangular fuzzy number Ã is as follows: for
each x ∈ R,

µÃ(x) =


h( x−a1a2−a1 ) a1 ≤ x ≤ a2

h( a3−xa3−a2 ) a2 ≤ x ≤ a3

0 x ≤ a1, x ≥ a3.

Then

η-cut of a triangular fuzzy number is as follows:

Ãη = [Ǎ(η), Â(η)] = [a1 + η(a2 − a1), a3 − η(a3 − a2)].

Thus we complete our proof by considering the concept of the nearest interval ap-
proximation.

I(Ã) = [Ǐ , Î] = [

∫ 1

0

Ǎ(η)dη,

∫ 1

0

Â(η)dη]

= [

∫ 1

0

(a1 + η(a2 − a1))dη,

∫ 1

0

(a3 − η(a3 − a2))dη]

= [
a1 + a2

2
,
a3 + a2

2
].

�

The fuzzy calculation is applied on fuzzy numbers. Fuzzy numbers must be used
for fuzzy sets. On the other hand, since we use triangular fuzzy numbers in this
article, we will present some mathematical operators on general triangular fuzzy
numbers.

2.1. Probability theory. Probability theory is a fundamental branch of mathemat-
ics that deals with the study of uncertainty and randomness. It provides a framework
for quantifying and analyzing the likelihood of events occurring and understanding
the patterns and behavior of random phenomena. By examining the principles and
concepts of probability theory, we can gain valuable insights into various fields, such
as statistics, risk assessment, decision theory, and machine learning.

At its core, probability theory enables us to make informed predictions and de-
cisions in situations where outcomes are uncertain. By assigning probabilities to
different events, we can assess the likelihood of their occurrence and estimate the
potential outcomes. This information empowers us to make rational choices, assess
risks, and optimize strategies in various domains.

Probability theory offers a range of powerful tools and techniques for analyzing
and modeling uncertain events. It encompasses concepts such as random variables,
probability distributions, conditional probabilities, and statistical inference. These
tools allow us to quantify uncertainty, measure the variability of outcomes, and make
probabilistic predictions based on available information.

Moreover, probability theory provides a rigorous framework for evaluating the
validity and reliability of scientific experiments and observations. It allows us to
assess the likelihood of observed data occurring purely by chance or due to some
underlying cause. This aspect is crucial in fields such as physics, biology, and social
sciences, where empirical evidence needs to be interpreted in a statistically sound
manner.

7
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By studying probability theory, you can develop essential skills for critical think-
ing, problem-solving, and decision-making. It equips you with the ability to assess
risks, evaluate uncertain situations, and make sound judgments based on available
information. Understanding probability theory empowers you to navigate complex
scenarios with confidence, optimize strategies, and make informed choices.

Whether you are interested in fields like finance, data science, engineering, or any
domain where uncertainty is inherent, probability theory will be an invaluable tool.
It enables you to analyze and interpret data, identify patterns, and make predictions
with a quantitative and evidence-based approach.

Embracing probability theory opens up a world of possibilities, allowing you to
make sense of the uncertain nature of our lives and harness its insights for better
decision-making. So, dive into the fascinating realm of probability theory, and unlock
the potential to unravel the mysteries of uncertainty while gaining a competitive edge
in your chosen field.

2.2. Fuzzy necessity and possibility theory. Probability theory and Fuzzy Ne-
cessity and Possibility Theory are two distinct mathematical frameworks that deal
with uncertainty and reasoning. While they approach uncertainty from different
perspectives, they share common goals and can be complementary in certain appli-
cations.

Probability theory is widely used to model and quantify uncertainty in various
fields, such as statistics, engineering, and finance. It provides a rigorous framework
for dealing with random events and enables the calculation of probabilities and
expected values. Probability theory assumes that uncertainty can be represented
by assigning probabilities to different outcomes, where the sum of all probabilities
equals 1.

On the other hand, Fuzzy Necessity and Possibility Theory, often referred to as
fuzzy logic, focuses on representing and reasoning with imprecise and vague infor-
mation. It acknowledges that in many real-world scenarios, uncertainties are not
easily quantifiable or can be better described using linguistic terms rather than pre-
cise probabilities. Fuzzy logic allows for the representation of uncertainty through
linguistic variables and membership functions, which assign degrees of membership
to different categories or sets.

The relationship between these two theories lies in their common aim of addressing
uncertainty. While probability theory deals with the uncertainty by assigning precise
probabilities to events, fuzzy logic tackles uncertainty by allowing for degrees of
membership or truth values. This distinction makes fuzzy logic particularly useful
when dealing with situations that involve subjective judgments or when precise data
is unavailable.

In some cases, these two theories can be used together to enhance the modeling
and reasoning capabilities. For example, in decision-making problems, fuzzy logic
can be used to represent imprecise criteria and preferences, while probability theory
can be employed to calculate the likelihood of different outcomes based on available
data. This combination allows for a more comprehensive analysis of uncertainty and
a better understanding of the problem at hand.

8
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Probability theory provides a solid foundation for statistical inference, risk as-
sessment, and decision analysis. Its mathematical rigor and wide acceptance make
it a valuable tool in various fields. Fuzzy logic, on the other hand, offers a flexible
framework for handling uncertainty in situations where precise data is limited or
when human reasoning and linguistic terms play a significant role. Its applications
range from control systems and pattern recognition to expert systems and artificial
intelligence.

By understanding and applying both probability theory and fuzzy logic, indi-
viduals can broaden their perspectives on uncertainty and gain powerful tools for
decision-making and problem-solving in complex and ambiguous situations. The
ability to navigate and reason under uncertainty is increasingly crucial in today’s
world, where data is often incomplete, noisy, or subject to interpretation. Embrac-
ing these theories can lead to more robust and nuanced analyses and, ultimately,
better-informed decisions.

Fuzzy Necessity Theory, also known as Fuzzy Essentiality Theory, was intro-
duced by Zadeh in 1978. The theory aimed to quantify the degree of necessity or
requirement for an element to belong to a fuzzy set. By focusing on the essential
characteristics of a set, this theory provided a means to reason about the crucial
criteria for membership and to make decisions based on necessity [19].

In 1978, Zadeh also introduced Possibility Theory as an extension of the Fuzzy Set
Theory. Possibility Theory aims to address the challenges of managing incomplete
or uncertain information in a more flexible and intuitive way. It provided a measure
of possibility to quantify the degree to which an element can be considered possible
or plausible within a fuzzy set. Possibility theory offered a robust framework for
reasoning, decision-making, and handling imprecision.

Both Fuzzy Necessity and Possibility Theory have undergone further development
and refinement over the years. Researchers and scholars have expanded upon the
foundational concepts, explored their applications in various domains, and developed
computational methods and algorithms to support their practical use.

Today, Fuzzy Necessity and Possibility Theory continue to be actively researched
and applied in fields such as artificial intelligence, decision analysis, optimization,
pattern recognition, and expert systems. They provide valuable tools for handling
uncertainty, vagueness, and imprecision, enabling more robust and flexible modeling
and analysis of complex systems.

Possibility theory is a mathematical theory in the fuzzy environment that is ac-
tually an alternative to probability theory. The content of this theory is that in the
analysis of environmental conditions and events, we are not only looking for possible
events but in uncertain conditions, we are looking for all the possibility of the events
that are introduced by the degree (measure) of these events’ possibility. While in
probability theory, only one number (probability) is used to describe the amount of
the chance that the event will occur as a result of an experiment. In the possibility
theory, another measure is defined as the “necessity measure”, which is coupled with
the possibility measure and estimates the necessity measure of each fuzzy set.

Suppose that ã and b̃ are two fuzzy numbers with membership functions µã(x)

and µb̃(x), respectively. Then the possibility, denoted by Pos(ã> b̃) and the necessity

9
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of ã, denoted by Nes(ã> b̃) and b̃, are defined, respectively as follows:

Pos(ã> b̃) = sup{min(µã(x), µb̃(x))|x,y ∈ R,x > y},

Nes(ã> b̃) = inf{max(1− µã(x), µb̃(x))|x,y ∈ R,x > y},
where > is one of >,<,=,>,6 [20].

The dual relationship between the possibility and the necessity is as follows:

Nes(ã> b̃) = 1− Pos(ã> b̃).

The necessity measure is established in the following conditions:

min{Nes(ã> b̃),Nes(ã> b̃)} = 0.

Also, the relationships between the measures of the possibility and the necessity
are as follows:

Pos(ã> b̃) ≥ Nes(ã> b̃),

Nes(ã> b̃) > 0 =⇒ Pos(ã> b̃) = 1,

Pos(ã> b̃) < 1 =⇒ Nes(ã> b̃) = 0.

If the right side, b̃, has a crisp value, the measure of the possibility and the necessity
of a fuzzy event is represented as follows:

Pos(ã ≤ b) = supx∈R{µã(x)|,x ≤ b}, Nes(ã ≤ b) = 1− supx∈R{µã(x)|,x > b},

Pos(ã ≥ b) = supx∈R{µã(x)|,x ≥ b}, Nes(ã ≥ b) = 1− supx∈R{µã(x)|,x < b},

Pos(ã = b) = µã(b), Nes(ã = b) = 1− µã(b).

Suppose that ã1, · · · , ãn are fuzzy variables and ϕi : Rn → R(i = 1, · · · ,m) is a
real function of the value. The possibility and necessity of fuzzy event ϕi : Rn →
R(i = 1, · · · ,m) is as follows:

Posi=1,··· ,m(ϕi(ã1, · · · , ãn) ≤ 0)
= supx1,··· ,xn

{min{µãj(xj)}}|ϕi(x1, · · · ,xn) ≤ 0, i = 1, · · · ,m},

Nesi=1,··· ,m(ϕi(ã1, · · · , ãn) ≤ 0)
= 1− supx1,··· ,xn

{min{µãj(xj)}}|ϕi(x1, · · · ,xn) ≤ 0, i = 1, · · · ,m}.

Proposition 2.8 (See [20, 25]). Suppose that ã = (aL, aR, γL, γR) and b̃ = (bL, bR, θL, θR)
are two ITrFNs. Then

Pos(ã ≤ b̃) =


0 aL − bR > γL + θR

bR−aL+γL+θR

γL+θR
0 < aL − bR ≤ γL + θR

1 aL − bR ≤ 0.

Lemma 2.9. Suppose that ã = (aL, aR, γL, γR) and b̃ = (bL, bR, θL, θR) are two

ITrFNs, p ∈ [0, 1]. Then Pos(ã ≤ b̃) if only if bR − aL ≥ (p− 1)(γL + θR).
10
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Proof. If p = 1, due to Pos(ã ≤ b̃) ≥ 1, it can be said that aL − bR ≤ 0, given the
value of p, we have bR − aL ≥ (p− 1)(γL + θR).

If 0 < p < 1, then bR−aL+γL+θR

γL+θR
≥ p, we have bR − aL ≥ (p− 1)(γL + θR).

Conversely, we will have the reversible process of the above equation. �

Lemma 2.10. Suppose that ã1, · · · , ã2 are fuzzy numbers and aLj − L−1(η)γLj and

aRj − R−1(η)γRj denote the lower and upper bounds of η-cuts ãj, j = 1, · · · , n, re-
spectively. Then for each possibility degree, η1, η2 and η3 with 0 6 η1, η2, η3 6 1, we
have

(1) Pos(
∑n
j=1 ãj ≤ b) ≥ η1 if and only if

∑n
j=1(aLj − L−1(η)γLj ) ≤ b,

(2) Pos(
∑n
j=1 ãj ≥ b) ≥ η2 if and only if

∑n
j=1(aRj −R−1(η)γRj ) ≥ b,

(3) Pos(
∑n
j=1 ãj = b) ≥ η3 if and only if

∑n
j=1(aLj −L−1(η)γLj ) ≤ b ≤

∑n
j=1(aRj −

R−1(η)γRj ).

Proof. (1) Suppose Pos(
∑n
j=1 ãj ≤ b) ≥ η1. Then we have

sup{min{µã1(x1), · · · , µãn(xn)|x1 + · · ·+ xn ≤ b} ≥ η1.

Assuming that (x∗1, · · · ,x∗n) = arg sup{min{µã1(x1
), · · · , µãn(xn)|x1 + · · ·+xn ≤ b}.

It results that min{µã1(x∗1), · · · , µãn(x∗n)} ≥ η1 and x∗1 + · · · + x∗n ≤ b. Since
min{µã1(x∗1), · · · , µãn(x∗n)} ≥ η1, we get

µã1(x∗1) ≥ η1, · · · , µãn(x∗n) ≥ η1.

Then we have x∗1 ∈ [aL1−L−1(η1)γL1 , a
R
1 −R−1(η1)γR1 ], · · · ,x∗n ∈ [aLn−L−1(η1)γLn , a

R
n−

R−1(η1)γRn ]. Thus x∗1 + · · · + x∗n ≤ b implies that
∑n
j=1(aLj − L−1(η1)γLj ) ≤ b. On

the contrary, if
∑n
j=1(aLj − L−1(η1)γLj ) ≤ b, then there exists η

′

1 with η1 ≤ η
′

1 ≤ 1.

Thus
∑n
j=1(aLj − L−1(η

′

1)γLj ) ≤ b. This is also true that

µã1(aL1 − L−1(η
′

1)γL1 ≥ η1, · · · , µãn(aL1 − L−1(η
′

1)γL1 ≥ η1.

This is equivalent to

min{µã1(aL1−L−1(η
′

1)γL1 ), · · · , µãn(aL1−L−1(η
′

1)γL1 )|
n∑
j=1

(aLj −L−1(η
′

1)γLj ) ≤ b} ≥ η1.

As a result, we have

min{µã1(aL1−L−1(η
′

1)γL1 ), · · · , µãn(aL1−L−1(η
′

1)γL1 )|
n∑
j=1

(aLj −L−1(η
′

1)γLj ) ≤ b} ≥ η1.

The proofs of (2) and (3) are similar to (1). �

Lemma 2.11. Suppose that ã1, · · · , ã2 are fuzzy numbers and aLj − L−1(η)γLj and

aRj − R−1(η)γRj denote the lower and upper bounds of η-cuts ãj, j = 1, · · · , n, re-
spectively. Then for each necessity degree, η1, η2 and η3 with 0 6 η1, η2, η3 6 1, we
have

(1) Nes(
∑n
j=1 ãj ≤ b) ≥ η1 if and only if

∑n
j=1(aRj −R−1(η)γRj ) ≤ b,

(2) Nes(
∑n
j=1 ãj ≥ b) ≥ η2 if and only if

∑n
j=1(aLj − L−1(η)γLj ) ≥ b,

(3) Nes(
∑n
j=1 ãj = b) ≥ η3 if and only if

∑n
j=1(aRj −R−1(η)γRj ) ≤ b,

∑n
j=1(aLj −

L−1(η)γLj ) ≥ b.
11



Rahimi et al. /Ann. Fuzzy Math. Inform. x (201y), No. x, xxx–xxx

Proof. Similar to 2.10. �

Most researchers use triangular fuzzy numbers with the following membership
function:

µã(x) =


x−a1
a2−a1 a1 ≤ x ≤ a2

1 x = a2
a3−x
a3−a2 a2 ≤ x ≤ a3.

If ãj , j = 1, · · · , n are triangular fuzzy numbers, according to the above lemma,
the following equations are obtained for the possibility and the necessity measures:

Pos(
∑n
j=1 ãj ≤ b̃) ≥ p

if and only if b2 −
∑n
j=1 a2j ≤ (p− 1)(

∑n
j=1(a2j − a1j) + (b3 − b2) ≤ b.

(Possibility)

Pos(

n∑
j=1

ãj ≤ b̃) ≥ η1 if and only if

n∑
j=1

a1j + η1(

n∑
j=1

(a2j − a1j) ≤ b,

Pos(

n∑
j=1

ãj ≥ b̃) ≥ η2 if and only if

n∑
j=1

a3j − η2(

n∑
j=1

(a3j − a2j) ≤ b,

Pos(

n∑
j=1

ãj = b̃) ≥ η3 if and only if

n∑
j=1

a1j + η3(

n∑
j=1

(a2j − a1j) ≤ b

≤
n∑
j=1

a3j − η3(

n∑
j=1

(a3j − a2j).

(Neccessity)

Nes(

n∑
j=1

ãj ≤ b̃) ≥ η1 if and only if

n∑
j=1

a2j + η1(

n∑
j=1

(a3j − a2j) ≤ b,

Nes(

n∑
j=1

ãj ≥ b̃) ≥ η2 if and only if

n∑
j=1

a2j − η2(

n∑
j=1

(a2j − a1j) ≤ b,

Nes(

n∑
j=1

ãj = b̃) ≥ η3 if and only if {
∑n

j=1 a2j+η3(
∑n

j=1(a3j−a2j)≤b,∑n
j=1 a2j−η3(

∑n
j=1(a2j−a1j)≥b .

The laws of Fuzzy Necessity and Possibility Theory presented here describe math-
ematical operations and relationships between fuzzy numbers. Fuzzy Necessity and
Possibility Theory is a branch of mathematics that extends the classical set theory
to handle uncertainty and imprecision in data. The laws outlined in the content
define measures of possibility (Pos) and necessity (Nes) for fuzzy numbers and fuzzy
events. These measures provide a way to quantify the degree to which an event
or a comparison between fuzzy numbers is possible or necessary. One important
aspect of these laws is the duality relationship between possibility and necessity.
The necessity measure can be expressed in terms of the possibility measure and vice

12
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versa. This duality allows for a complementary understanding of uncertainty and
provides a comprehensive framework for reasoning about fuzzy events. The laws
also establish conditions for the necessity measure, ensuring that it satisfies certain
properties. These properties help ensure consistency and coherence in the theory.
Additionally, the content presents specific formulas for calculating the possibility and
necessity measures in different scenarios, such as when comparing fuzzy numbers or
evaluating fuzzy functions.

By studying and applying Fuzzy Necessity and Possibility Theory, researchers
and practitioners gain a powerful toolset for modeling and analyzing uncertain and
imprecise data. The theory finds applications in various fields, including decision-
making, pattern recognition, data analysis, and control systems, among others.
Understanding and utilizing Fuzzy Necessity and Possibility Theory can enhance
decision-making processes, improve risk assessment, and provide more robust solu-
tions in scenarios where uncertainty is prevalent. Its flexibility and ability to handle
ambiguity make it a valuable addition to the toolbox of anyone working with complex
and uncertain information.

3. Fuzzy DEA Model

Data Envelopment Analysis measures the relative efficiency of the DMUs set.
Suppose that there are n decision-making units (DMUs) for evaluation. Each DMU
uses m inputs to generate s outputs. Especially, DMUj consumes x̃ij(i = 1, · · · .,m)
fuzzy input values and produces ỹrj fuzzy output values.

The Fuzzy CCR model for evaluation is as follows:
(Primal FCCR DEA)

min θ

s.t.
n∑
j=1

λj x̃ij ≤ θx̃io i = 1, 2, · · · ,m,
n∑
j=1

λj ỹrj ≥ ỹro r = 1, 2, · · · , s,

λj ≥ 0 j = 1, 2, · · · , n,
θ free.

(3.1)

(Dual FCCR DEA)

max
s∑
r=1

urỹro

s.t.
m∑
i=1

vix̃io = 1

s∑
r=1

urỹrj −
m∑
i=1

vix̃ij ≤ 0 j = 1, 2, · · · , n,

vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s.

(3.2)

In the following, we present a method to solve the model 3.2. We consider the
fuzzy inputs and outputs of DMUs as triangular fuzzy numbers.

13
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Suppose x̃ij = (x1
ij , x

2
ij , x

3
ij) and ỹij = (y1

rj , y
2
rj , y

3
rj), which are x1

ij ≥ 0 and

y1
rj ≥ 0 for i = 1, · · · ,m and r = 1, · · · , s. Hence, the model 3.2 can be rewritten as

follows:

max z̃o =
s∑
r=1

ur(y
1
ro, y

2
ro, y

3
ro)

s.t.
m∑
i=1

vi(x
1
io, x

2
io, x

3
io) = (11, 12, 13)

s∑
r=1

ur(y
1
rj , y

2
rj , y

3
rj)−

m∑
i=1

vi(x
1
ij , x

2
ij , x

3
ij) ≤ 0 j = 1, 2, · · · , n,

vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, , s,

(3.3)

where 11 ≤ 12 and 13 ≥ 12 are real numbers. There are several methods to solve
the above model. The η-cut Method has been the most focused among the other
methods, in which the model is transformed into an interval linear programming
problem. There are many methods to compare the intervals. In this section, we
propose our suggested approach and compare it with the two methods mentioned
above.

3.1. Despotis and Smirlis’s method. Suppose that all data of inputs and out-
puts xij , yrj(i = 1, · · · ,m; r = 1, · · · , n.) are an interval data [x̌ij , x̂ij ] and [y̌rj , ŷrj ]
respectively, which x̌ij ≥ 0 and y̌rj ≥ 0. In order to deal with such uncertainty,
Despotis and Smirlis [9] developed LP models to generate upper and lower efficiency
boundaries for each DMU.

max Ĥo =
s∑
r=1

urŷro

s.t.
m∑
i=1

vix̌io = 1

s∑
r=1

urŷro −
m∑
i=1

vix̌io ≤ 0

s∑
r=1

ury̌rj −
m∑
i=1

vix̂ij ≤ 0, j = 1, 2, · · · , n, j 6= 0,

vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s.

(3.4)

max Ȟo =
s∑
r=1

ury̌ro

s.t.
m∑
i=1

vix̂io = 1

s∑
r=1

ury̌ro −
m∑
i=1

vix̂io ≤ 0

s∑
r=1

urŷrj −
m∑
i=1

vix̌ij ≤ 0 j = 1, 2, · · · , n, j 6= 0,

vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s.

(3.5)

[9]Ĥo and Ȟo are the best relative efficiency for DMUO under the most favor-
able and the most unfavorable conditions, respectively. Considering the upper and

14
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lower boundaries in DEA models, we may find out that the set of constraints used
to measure the DMUs efficiency varies from one DMU to another one, and even
the set of constraints used to measure the upper and lower efficiency boundaries
of some DMUs are different from the other DMUs. The main drawback of using
different sets of constraints to measure the efficiency of DMUs is the lack of com-
parison between efficiencies because different generation boundaries are accepted in
the efficiency measurement process. The Despotis and Smirlis method presented in
the article aims to address the issue of uncertainty in DEA by considering interval
data for inputs and outputs. They propose two linear programming (LP) models
to generate upper and lower efficiency boundaries for each Decision Making Unit
(DMU).

The first LP model, represented by equation 3.4, maximizes the upper-efficiency
boundary, denoted as Ĥo, which is the sum of weighted outputs under the upper
limits. The model includes constraints to ensure that the weighted sum of inputs
equals one and that the weighted sum of outputs minus the weighted sum of inputs
is less than or equal to zero for each DMU. Additionally, constraints are included to
handle the uncertainty in the upper limits of the outputs.

The second LP model, represented by equation 3.5, maximizes the lower efficiency
boundary, denoted as Ȟo, which is the sum of weighted outputs under the lower
limits. This model is similar to the first model but deals with the lower limits of the
outputs.

One of the disadvantages of this method is the variation in the set of constraints
used to measure the efficiency of different DMUs. Each DMU may have a different set
of constraints, and even the set of constraints used to measure the upper and lower
efficiency boundaries for a specific DMU may differ from those used for other DMUs.
This inconsistency in the constraints makes it difficult to compare the efficiencies of
different DMUs since different generation boundaries are accepted in the efficiency
measurement process.

3.2. Wang et al.’s method. Wang et al. [10] developed another interval DEA
model to prevent the use of different generation boundaries to measure the efficiency
of different DMUs.

max θ̂o =
s∑
r=1

urŷro

s.t.
m∑
i=1

vix̌io = 1

s∑
r=1

urŷrj −
m∑
i=1

vix̌ij ≤ 0 j = 1, 2, · · · , n,

vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s.

(3.6)

15



Rahimi et al. /Ann. Fuzzy Math. Inform. x (201y), No. x, xxx–xxx

max θ̌o =
s∑
r=1

ury̌ro

s.t.
m∑
i=1

vix̂io = 1

s∑
r=1

urŷrj −
m∑
i=1

vix̌ij ≤ 0 j = 1, 2, · · · , n,

vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s.

(3.7)

When all DMUs are at their best generation state, θ̂o obtains the best relative
possible efficiency for DMUO, whereas θ̌o obtains the best relative possible efficiency

for the lower boundary. They form the relative efficiency intervals [θ̌o, θ̂o]. Compared
to the Despotis and Smirlis’ interval DEA models, Wang’s model uses a constant
generation boundary as a benchmark to measure the efficiency of all DMUs, which
makes their model to be more reasonable and reliable. Also, their approach does
not seem to be more reasonable with sequential preference-based data.

The Wang et al.’s method, presented in the article, aims to address the issue of
using different generation boundaries to measure the efficiency of different DMUs in
interval data envelopment analysis (DEA). They propose two interval DEA models
that use a constant generation boundary as a benchmark for measuring efficiency.

The first model, represented by equation 3.6, maximizes the upper-efficiency

boundary, denoted as θ̂o, which is the sum of weighted outputs under the upper
limits. The model includes constraints to ensure that the weighted sum of inputs
equals one and that the weighted sum of outputs minus the weighted sum of inputs
is less than or equal to zero for each DMU. The uncertainty in the upper limits of
the outputs is also considered.

The second model, represented by equation 3.7, maximizes the lower efficiency
boundary, denoted as θ̌o, which is the sum of weighted outputs under the lower
limits. Similar to the first model, this model uses a constant generation boundary
and includes constraints to handle the uncertainty in the lower limits of the outputs.

One advantage of Wang et al.’s method is that it avoids the use of different
generation boundaries for measuring efficiency across DMUs. Instead, a constant
benchmark is employed, which makes the model more reasonable and reliable. How-
ever, the article mentions that their approach may not be as suitable for sequential
preference-based data, indicating a potential limitation or drawback of the Method
in certain scenarios. Further analysis and evaluation would be required to fully
understand the implications and limitations of this approach.

4. Proposed approach

One of the most suitable methods for providing imprecise information is to use
fuzzy set theory. In most methods of solving decision-making models with fuzzy
data, the data transformation method to definite is used. The Method of the closest
definite approximation of fuzzy data with the least deletion of information is one of
the new and appropriate methods.

If we use a defuzzification operator that replaces the fuzzy set with a definite
number, we generally lose a lot of important information. Therefore, a definite set
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approximation of a fuzzy set is proposed. In this approach, we replace a given fuzzy
set with a deterministic set that is somehow close to the previous set. The most
popular approximation operator is the so-called closest normal set operator. This
concept is used in many fields, such as fuzzy pattern recognition, image processing,
fuzzification, etc.

In this research, to check the efficiency of decision-making units with fuzzy data,
we use a type of interval approximation which is a continuous and simple approx-
imation operator called nearest interval approximation. In other words, interval
approximation is used to obtain the nearest interval approximation, although differ-
ent methods are used to find the interval approximation of fuzzy sets.

In fact, the approximation of the nearest interval can preserve the characteristics
and importance of fuzzy numbers from a theoretical and practical point of view. It
is also computationally efficient and additive, but the proposed approach with the
approximation of the closest interval can be of great help to some extent in practical
and theoretical progress. Where it is recommended to simplify the data (expressed
by fuzzy numbers), but the ambiguity should be preserved (See [26]).

The nearest interval approximation operator follows the interval approximation
rule and the distance issue. Therefore, this operator results in a distance that is
the best distance according to a certain measurement of distances between fuzzy
numbers. Therefore, nearest interval approximation can preserve the characteristics
and importance of fuzzy numbers from a theoretical and practical point of view.
Also, this operator is simple and natural, and continuous (See[27]).

The idea behind models is to propose a new approach for measuring the efficiency
of DMUs in a fuzzy environment. The approach involves transforming fuzzy inputs
and outputs into interval numbers using the nearest interval approximation method.
In the proposed approach, the fuzzy inputs x̃ij and fuzzy outputs ỹrj are represented
as intervals [x̌ij , x̂ij ] and [y̌rj , ŷrj ], respectively. These intervals are obtained by
taking the averages of the lower and upper bounds of the fuzzy numbers. Therefore,
given the approximation of the nearest interval, fuzzy inputs x̃ij = (x1

ij , x
2
ij , x

3
ij) and

fuzzy outputs ỹrj = (y1
rj , y

2
rj , y

3
rj) are as follows:

[
x1
ij + x2

ij

2
,
x3
ij + x2

ij

2
] = [x̌ij , x̂ij ], (i = 1, · · · ,m; j = 1, · · · , n; ),

[
y1
rj + y2

rj

2
,
y3
rj + y2

rj

2
] = [y̌rj , ŷrj ], (r = 1, · · · , s; j = 1, · · · , n; ).

Here, in order to prevent the use of different generation boundaries in measuring the
efficiency of different DMUs, we present new models.

Suppose z̃j =
∑s

r=1 ur ỹrj∑m
i=1 vix̃ij

(j = 1, · · · , n) is the efficiency of DMUj(j = 1, · · · , n).

The efficiency of a DMUj(j = 1, · · · , n), denoted as Z̃j , is calculated as the ratio
of the aggregated fuzzy outputs to the aggregated fuzzy inputs. Using interval
calculations, the efficiency zj of DMUj(j = 1, · · · , n) is expressed as [Žj , Ẑj ], where

Žj represents the lower bound, and Ẑj represents the upper bound of the efficiency.
Then given the approximation of the nearest interval and interval calculations, we
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have the following:

Zj =

∑s
r=1 ur[y̌rj , ŷrj ]∑m
i=1 vi[x̌ij , x̂ij ]

=
[
∑s
r=1 ury̌rj ,

∑s
r=1 urŷrj ]

[
∑m
i=1 vix̌ij ,

∑m
i=1 vix̂ij ]

= [

∑s
r=1 ury̌rj∑m
i=1 vix̂ij

,

∑s
r=1 urŷrj∑m
i=1 vix̌ij

].

Thus Zj is also an interval number [Žj , Ẑj ](j = 1, ..., n). Also we have

0 < Zj = [Žj , Ẑj ] = [

∑s
r=1 ury̌rj∑m
i=1 vix̂ij

,

∑s
r=1 urŷrj∑m
i=1 vix̌ij

] ≤ 1, j = 1, · · · , n,

To measure the upper and lower boundaries of DMUO (a specific DMU), frictional
programming models are used. These models aim to maximize the upper boundary
Ẑo and minimize the lower boundary Žo of DMU ′Os relative efficiency, considering
the best and worst values of the objective function in interval linear programming.

max Ẑo =
∑s

r=1 ur ŷro∑m
i=1 vix̌io

s.t.
∑s

r=1 ur ŷrj∑m
i=1 vix̌ij

≤ 1 j = 1, · · · , n,
vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s.

(4.1)

max Žo =
∑s

r=1 ur y̌ro∑m
i=1 vix̂io

s.t.
∑s

r=1 ur y̌rj∑m
i=1 vix̂ij

≤ 1 j = 1, · · · , n,
vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s.

(4.2)

The above models are based on the best and worst value of the objective function
in interval linear programming as well as the CCR model in data coverage analysis.
The frictional programming models can be transformed into the linear programming
model. These constraints ensure that the efficiency of DMUo, represented by Ẑo
or Žo , does not exceed one and that the aggregated fuzzy outputs and inputs are
balanced.

max Ẑo =
s∑
r=1

urŷro

s.t.
m∑
i=1

vix̂io = 1

s∑
r=1

urŷrj −
m∑
i=1

vix̌ij ≤ 0 j = 1, 2, · · · , n,

vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s.

(4.3)

max Žo =
s∑
r=1

ury̌ro

s.t.
m∑
i=1

vix̂io = 1

s∑
r=1

ury̌rj −
m∑
i=1

vix̂ij ≤ 0 j = 1, 2, · · · , n,

vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s,

(4.4)
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where Ẑo denotes the best relative efficiency of DMUo when all DMUs are at their
best generation activity, while Žo presents the worst relative efficiency of DMUo
when all DMUs are at their worst generation activity. Therefore, the meanings of

Ĥo, Ȟo, θ̂o, and θ̌o differ from the meanings of Ẑo and Ȟo.
In the following, the efficiency of DMU can be expressed as an interval number.

Definition 4.1. DMUo is called the DEA interval strong efficiency, if the efficiency
of upper and lower boundaries equals 1 in the interval of efficiency [Ž∗o , Ẑ

∗
o ], i.e.,

Ž∗o = Ẑ∗o = 1 .

Definition 4.2. DMUo is called the DEA interval weak efficiency, if the efficiency
of the upper boundary equals 1, i.e., Ẑ∗o = 1 and DMUo is called DEA interval

inefficiency, if Ẑ∗o < 1.

Sometimes in evaluating DMUs, the efficiency of the lower boundary of some
DMUs is higher than the efficiency of their upper boundary. In such circumstances,
we need a secondary goal to establish the efficiency interval. This secondary goal

is achieved by adding the additional constraint
s∑
r=1

ury̌ro ≤
s∑
r=1

u∗r ŷro in order to

establish the efficiency interval.

Theorem 4.3. For each DMU in which the efficiency of the lower boundary is higher
than the efficiency of the upper boundary, the efficiency model of the lower boundary

(4.4) needs an additional constraint of
s∑
r=1

ury̌ro ≤
s∑
r=1

u∗r ŷro. In the optimal solution,

this constraint is established by the equivalent.

Proof. By adding the constraint of
s∑
r=1

ury̌ro ≤
s∑
r=1

u∗r ŷro to the model (4.4), it is

written as follows:

max Žo =
s∑
r=1

ury̌ro

s.t.
s∑
r=1

ury̌ro ≤
s∑
r=1

u∗r ŷro
m∑
i=1

vix̂io = 1

s∑
r=1

ury̌rj −
m∑
i=1

vix̂ij ≤ 0 j = 1, 2, · · · , n,

vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s.

(4.5)

Now given to the objective function Žo =
s∑
r=1

ury̌ro and
s∑
r=1

ury̌ro ≤
s∑
r=1

u∗r ŷro, it is

obvious that the optimal solution of the lower boundary efficiency equals
s∑
r=1

u∗r ŷro.

�

Theorem 4.3 states that in DEA model, if the efficiency of the lower boundary is
higher than the efficiency of the upper boundary, an additional constraint is required
in the efficiency model of the lower boundary. This additional constraint is given by
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the inequality
s∑
r=1

ury̌ro ≤
s∑
r=1

u∗r ŷro Theorem 4.3 provides valuable insights into the

field of data envelopment analysis, a widely used method for measuring the relative
efficiency of decision-making units (DMUs). By understanding and applying this
theorem, researchers, and practitioners can improve the accuracy and reliability of
their efficiency assessments.

The significance of this theorem lies in its ability to address situations where the
efficiency of the lower boundary exceeds that of the upper boundary. In such cases,
it is necessary to introduce an additional constraint to the efficiency model of the
lower boundary, ensuring that the optimal solution aligns with the reference output
quantities. This constraint enhances the validity of efficiency evaluations and helps
capture the true efficiency levels of the DMUs under analysis.

By being aware of Theorem 4.3 and its implications, researchers and practitioners
can avoid potential errors or inaccuracies in their efficiency evaluations. This theo-
rem serves as a reminder of the importance of incorporating appropriate constraints
into DEA models, especially when dealing with scenarios where the lower boundary
efficiency surpasses the upper boundary efficiency. By adhering to the principles
outlined in this theorem, analysts can enhance the robustness and reliability of their
efficiency assessments, leading to more accurate decision-making processes and re-
source allocation strategies.

Overall, Theorem 4.3 underscores the critical role of constraints in DEA models
and highlights the need for their careful consideration to ensure valid and meaningful
efficiency evaluations. By embracing this theorem, researchers and practitioners can
enhance the effectiveness of their analyses and contribute to improved decision-
making in various domains, such as operations research, management science, and
economics.

Theorem 4.4. If Ž∗o and Ẑ∗o are the optimal values of the objective function of the

models (4.3) and (4.4), Ȟ∗o and Ĥ∗o are the optimal values of the objective function

of the models (3.4) and (3.5), θ̌∗o and θ̂∗o are the optimal values of objective function

of the models (3.6) and (3.7), then θ̌∗o ≤ Ȟ∗o ≤ Ž∗o and θ̂∗o = Ẑ∗o ≤ Ĥ∗o .

Proof. Let us v∗i and u∗r (i = 1, · · · ,m; r = 1, · · · , s) be the optimal solutions of the

model (4.3). Then we have
s∑
r=1

u∗r ŷrj −
m∑
i=1

v∗i x̌ij ≤ 0, j = 1, 2, · · · , n. Specially, for

DMUo, we have

s∑
r=1

u∗r y̌ro −
m∑
i=1

v∗i x̂io ≤
s∑
r=1

u∗r ŷro −
m∑
i=1

v∗i x̌io ≤ 0, j = 1, 2, · · · , n.

Thus v∗i and u∗r (i = 1, · · · ,m; r = 1, · · · , s) are possible solutions for the models

(3.5) and (4.4), respectively. So θ̌∗o =
s∑
r=1

u∗r y̌rj = Ȟo ≤ Ȟ∗o . On the other hand,

given that model (3.5) has the additional constraint
s∑
r=1

urŷrj −
m∑
i=1

vix̌ij ≤ 0. Hence

compared to model (4.4), θ̌∗o ≤ Ȟ∗o ≤ Ž∗o . The proof θ̂∗o = Ẑ∗o ≤ Ĥ∗o is confirmed
with respect to (3.5). �
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Theorem 4.4 provides relationships between the optimal values of the objective
functions in different models, showing that the values of H, θ, and Z (efficiency
measure in the proposed approach) are related in certain orderings.

Theorem 4.4 has important implications for understanding the relationships be-
tween different models in DEA and the optimal values of their objective functions.
By studying and applying this theorem, researchers, and practitioners can gain a
deeper understanding of the efficiency evaluations and comparisons performed using
these models.

The significance of this theorem lies in its ability to establish bounds on the
optimal values of the objective functions in various DEA models. It provides insights
into the relationships between these models and their respective efficiency measures,
such as θ and H. By establishing inequalities between these measures, and the
theorem provides a framework for understanding the relative efficiency levels and
performance of decision-making units (DMUs).

Understanding Theorem 4.4 enables researchers and practitioners to interpret and
compare the efficiency measures obtained from different DEA models. It highlights
the fact that θ, H, and Z, as represented by the objective functions in models (3.6),
(3.7), (3.4), (3.5), (4.3) and (4.4), are interrelated and subject to certain inequalities.
These relationships help ensure consistency and coherence in efficiency evaluations
across different models and provide a deeper understanding of the efficiency assess-
ments conducted in DEA.

By being aware of Theorem 4.4 and its implications, researchers and practitioners
can make informed decisions when selecting and applying DEA models for efficiency
analysis. They can use this theorem as a guiding principle to ensure that their cho-
sen model aligns with the desired objectives and provides reliable and meaningful
efficiency evaluations. Furthermore, the theorem can assist in interpreting and com-
paring the results obtained from different models, facilitating better decision-making
processes and resource allocation strategies.

Overall, Theorem 4.4 serves as a valuable tool in the field of DEA, shedding light
on the relationships between different models and their corresponding efficiency mea-
sures. By understanding and utilizing this theorem, researchers, and practitioners
can enhance the quality and reliability of their efficiency evaluations, leading to more
informed decision-making and improved resource management in various domains,
including operations research, management science, and economics.

So far, the advantages of the proposed approach can be listed as follows: In-
formation Preservation: Unlike traditional defuzzification methods that result in a
significant loss of important information, the proposed approach aims to approxi-
mate fuzzy sets while preserving their characteristics and importance. This ensures
that the ambiguity inherent in the data is maintained, providing a more accurate
representation of the underlying uncertainty.

Computational Efficiency: The nearest interval approximation operator employed
in this research offers a computationally efficient and simple method for obtaining
interval approximations. It allows for the transformation of fuzzy inputs and outputs
into interval numbers, facilitating further analysis and decision-making processes.

Theoretical Relevance: The proposed approach builds upon well-established con-
cepts and operators in fuzzy set theory. Utilizing the closest normal set operator
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and interval approximation rule aligns with existing theoretical foundations and ex-
tends their applicability to various domains such as fuzzy pattern recognition, image
processing, and fuzzification.

Practical Applicability: The proposed approach not only has theoretical merits
but also holds practical value. It offers a means to simplify data expressed by fuzzy
numbers while preserving the underlying ambiguity. This can be highly beneficial
in real-world scenarios where decision-making units need to handle imprecise or
uncertain information effectively.

Measurement of Efficiency: The proposed approach introduces frictional pro-
gramming models that measure the upper and lower boundaries of the efficiency of
decision-making units (DMUs). These models provide valuable insights into the rel-
ative efficiency of DMUs under different scenarios, enabling performance evaluation
and benchmarking.

Secondary Goal Establishment: In cases where the efficiency of the lower bound-
ary of certain DMUs exceeds that of their upper boundary, the proposed approach
introduces a secondary goal to establish an efficiency interval. This ensures a more
comprehensive evaluation of DMUs, considering both upper and lower boundary
efficiencies.

Theoretical Comparisons: Theorems within the proposed approach establish rela-
tionships between different objective functions and efficiency measures. This allows
for meaningful comparisons between different models and provides a deeper under-
standing of the efficiency bounds and the associated interpretations. In summary,
the proposed approach combining fuzzy set theory, interval approximation, and fric-
tional programming models offers several advantages, including effective handling of
imprecise information, information preservation, computational efficiency, theoreti-
cal relevance, practical applicability, and comprehensive efficiency evaluation. These
advantages serve as strong motivations for researchers and practitioners interested
in advancing decision-making models with fuzzy data.

4.1. Proposed approach for ranking. Efficiency ranking is a crucial aspect of
DEA, as it allows decision-makers to identify and prioritize DMUs based on their
performance and effectiveness. By studying and applying the ranking approaches
presented in the text, researchers and practitioners can gain valuable insights into
how to compare and rank the efficiency of different DMUs, even in the presence of
fuzzy and imprecise data.

In most past methods, like other standard DEA ranking methods, fuzzy and
imprecise data are not considered because the efficiency evaluation is expressed as
interval efficiency in the proposed approach for solving fuzzy DEA. Therefore, a
simple and efficient ranking approach is required to compare and rank the efficiency
of different DMUs. Nowadays, there are a few approaches to ranking interval effi-
ciency. In the following, we present two ranking approaches: the ranking approach
of weak efficiency units and the ranking approach of strong efficiency units.

The motivation for developing a simple and efficient ranking approach lies in
the limitations of existing methods. The text acknowledges that current standard
DEA ranking methods do not consider fuzzy and imprecise data, which can be
prevalent in real-world scenarios. Therefore, the proposed approach for solving fuzzy
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DEA fills this gap by expressing efficiency evaluation as interval efficiency. This
approach allows for a more comprehensive and realistic assessment of DMU efficiency
by accounting for uncertainty and imprecision in the data.

By introducing two ranking approaches, namely the ranking approach of weak
efficiency units and the ranking approach of strong efficiency units, the text pro-
vides alternative methods for comparing and ranking DMUs based on their interval
efficiency. These approaches offer flexibility and adaptability to different contexts
and preferences, allowing decision-makers to choose the most appropriate method
for their specific needs.

Understanding and applying these ranking approaches can have several benefits.
Firstly, it enables researchers and practitioners to account for fuzzy and imprecise
data in their efficiency evaluations, leading to more accurate and reliable rankings.
This is particularly important in domains where data uncertainty is prevalent, such
as healthcare, finance, and environmental analysis.
Secondly, a simple and efficient ranking approach saves time and computational re-
sources, making it practical for large-scale efficiency evaluations. Decision-makers
can quickly compare and rank DMUs without being burdened by complex method-
ologies or excessive computational requirements. This streamlines the decision-
making process and facilitates effective resource allocation.

Lastly, having multiple ranking approaches provides flexibility and robustness in
assessing DMU efficiency. Different approaches may emphasize different aspects or
criteria, allowing decision-makers to gain a comprehensive understanding of DMU
performance from multiple perspectives. This enhances the decision-making process
by considering various factors and considerations relevant to the specific context.

In conclusion, the need for a simple and efficient ranking approach in DEA is
evident, especially when dealing with fuzzy and imprecise data. The presented
ranking approaches offer valuable tools for comparing and ranking DMU efficiency,
taking into account interval efficiency and accommodating different preferences and
contexts. By utilizing these approaches, researchers and practitioners can make more
informed decisions, allocate resources effectively, and drive continuous improvement
in various fields of application.

Definition 4.5. Suppose m, 0 ∈ R. We define the marked distance d∗(m, 0) = m.
If m > 0, then m is the right side of 0, and the interval is d∗(m, 0) = m. If m < 0,
then m is the left side of 0, and the interval is d∗(m, 0) = −m. Thus d∗(m, 0) = m
is the marked distance of m from 0.

Now we use the concept of marked distance to rank the weak interval efficiency.
Since 0 < Ž∗o , the efficiency interval is positive, and the total interval is placed on

the right side of 0. Hence, the marked distance of definite interval [Ž∗o , Ẑ
∗
o ] from 0

can be defined as follows:

d∗([Ž∗o , Ẑ
∗
o ], 0) =

1

2
[d∗(Ž∗o , 0) + d∗(Ẑ∗o , 0)] =

1

2
[Ž∗o + Ẑ∗o ].

Definition 4.6. Ranking for weak interval efficiency DMUs are defined as follows:

[Ž∗i , Ẑ
∗
i ] < [Ž∗j , Ẑ

∗
j ] if and only if d∗([Ž∗i , Ẑ

∗
i ], 0) < d∗([Ž∗j , Ẑ

∗
j ], 0),

where j = 1, · · · , n, i 6= j.
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In evaluating DMUs, some DMUs may be strong interval efficiency. Hence, there
is a need to rank efficient DMUs. One Method to rank them is first to solve the
super-efficiency interval models, which is:

max SẐo =
s∑
r=1

urŷro

s.t.
m∑
i=1

vix̂io = 1

s∑
r=1

urŷrj −
m∑
i=1

vix̌ij ≤ 0 j = 1, 2, · · · , n, j 6= o

vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s.

(4.6)

max SŽo =
s∑
r=1

ury̌ro

s.t.
m∑
i=1

vix̂io = 1

s∑
r=1

ury̌rj −
m∑
i=1

vix̂ij ≤ 0 j = 1, 2, · · · , n, j 6= o

vi ≥ 0 i = 1, 2, · · · ,m,
ur ≥ 0 r = 1, 2, · · · , s.

(4.7)

For DMUo, the lower boundary efficiency of the above super-efficiency model is
SŽ∗o ≥ 1. Now the definition (definition number of ranking for weak efficiency) can
be used to rank the strong interval efficiency DMUs.

Definition 4.7. Ranking for interval strong efficiency DMUs are defined as follows:

[SŽ∗i , SẐ
∗
i ] < [SŽ∗j , SẐ

∗
j ] if and only if d∗([SŽ∗i , SẐ

∗
i ], 0) < d∗([SŽ∗j , SẐ

∗
j ], 0),

where j = 1, 2, · · · , n, i 6= j.

Understanding marked distance and interval efficiency allows decision-makers to
identify strong and weak performers, facilitating the identification of areas for im-
provement and potential strategies for enhancing efficiency. By implementing the
ranking methods outlined in the text, decision-makers can prioritize resources, in-
vestments, or interventions to achieve greater efficiency and effectiveness in their
operations.

Additionally, acquiring knowledge about these concepts can broaden one’s under-
standing of optimization techniques and mathematical models used in various fields,
such as economics, operations research, and management science. This knowledge
can be applied to a wide range of real-world scenarios, including resource allocation,
performance evaluation, and benchmarking, leading to improved organizational out-
comes.

In summary, by delving into the concepts presented in the text and embracing the
motivation to understand and apply them, the reader can enhance their decision-
making abilities, identify areas for improvement, and contribute to achieving greater
efficiency and effectiveness in their endeavors.
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4.2. Numerical examples. In this section, three numerical examples are presented
to show the fuzzy DEA models by different approaches. In all three numerical exam-
ples, the interval efficiency and ranking are determined. In addition, the examples
are solved by the models of Despotis and Smirlis and Wang et al., and then, their
results are compared with the proposed approach.

Example 4.8. Numerical example used is taken from Guo and Tanaka [28]. Infor-
mation on the numerical example containing five DMUs with two fuzzy inputs and
two fuzzy outputs is presented in Table 4.8. The fuzzy inputs and outputs are con-
sidered symmetric triangular fuzzy numbers, which are a special type of triangular
fuzzy numbers.

Table 1. Tanaka and Gue data (2001)

DMU DMU1 DMU2 DMU3 DMU4 DMU5

Input1 (3.5, 4.0, 4.5) (2.9, 2.9, 2.9) (4.4, 4.9, 5.4) (3.4, 4.1, 4.8) (5.9, 6.5, 7.1)

Input2 (1.9, 2.1, 2.3) (1.4, 1.5, 1.6) (2.2, 2.6, 3.0) (2.2, 2.3, 2.4) (3.6, 4.1, 4.6)

Output1 (2.4, 2.6, 2.8) (2.2, 2.2, 2.2) (2.7, 3.2, 3.7) (2.5, 2.9, 3.3) (4.4, 5.1, 5.8)

Output2 (3.8, 4.1, 4.4) (3.3, 3.5, 3.7) (4.3, 5.1, 5.9) (5.5, 5.7, 5.9) (6.5, 7.4, 8.3)

Table 4.8 shows the results of interval efficiency based on Despotis and Smirlis’s
model. The results show that DMUs{2, 3, 5} are weak interval efficiency while
DMU4 is strong interval efficiency. The results of interval efficiency for Wang’s
model are presented in Table 4.8. DMUs{2, 4, 5} are weak interval efficiency. In
this model, unlike Despotis and Smirlis’s model, DMU4 is transformed from strong
interval efficiency into weak one. The results of our proposed approach are presented
in Table 4.8. In this example, with the help of the nearest interval approximation,
each decision unit that has fuzzy information is attributed to an interval, which
causes continuity, uniformity, and linearity. These results show that DMUs{2, 4}
are strong interval efficiency, while in Despotis and Smirlis’s model, DMU5 is weak
interval efficiency. DMU3, like Wang’s model, is interval inefficiency. Also, the re-

sults of these three views show that θ̌∗o ≤ Ȟ∗o ≤ Ž∗o and θ̂∗o = Ẑ∗o ≤ Ȟ∗o . For the
results of our proposed approach, efficiency DMUs are ranked, and the ranking re-
sults are presented in Table 4.8. Table 4.8 presents a comparison and ranking of the
interval efficiencies of the five DMUs. The ranking is based on the marked distance
(d∗ ) from the proposed approach. DMU 2 obtains the highest ranking, followed by
DMU 4, while DMU 5 ranks third.

In summary, the text provides a detailed analysis of three numerical examples
utilizing fuzzy DEA models to determine interval efficiency and ranking for DMUs.
It demonstrates the application of different models and compares their results. The
proposed approach introduces the concept of nearest interval approximation to en-
hance the evaluation process. The analysis presented in the text allows readers to
gain insights into the performance of DMUs, make informed decisions, and allocate
resources effectively.
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Table 2. Interval efficiency Results by Despotis and Smirlis’s model

DMU DMU1 DMU2 DMU3 DMU4 DMU5

[Ȟ∗o , Ĥ
∗
o ] [0.7579, 0.9633] [0.9904, 1] [0.7165, 1] [1, 1] [0.8450, 1]

Table 3. Interval efficiency Results by Wang’s model

DMU DMU1 DMU2 DMU3 DMU4 DMU5

[θ̌∗o , θ̂
∗
o ] [0.7579, 0.9093] [0.9567, 1] [0.7165, 0.9571] [0.9244, 1] [0.7973, 1]

Table 4. Interval efficiency Results by ourselves a model

DMU DMU1 DMU2 DMU3 DMU4 DMU5

[Ž∗o , Ẑ
∗
o ] [0.8129, 0.9093] [1, 1] [0.7722, 0.9577] [1, 1] [0.9208, 1]

Table 5. compare and rank the interval efficiencies of the five DMUs

DMU [SŽ∗o , SẐ
∗
o ] d∗ Rank

DMU2 [1.0624, 1.0624] 1.0624 2
DMU4 [1.0864, 1.2257] 1.1560 1
DMU5 [0.9208, 1] 0.9604 3

Understanding the interval efficiency of DMUs is crucial for decision-makers as it
helps identify both weak and strong performers. The examples presented in the text
provide tables (Table 4.8, Table 4.8, and Table 4.8) that show the interval efficiency
results obtained by different models for each DMU. By comparing these results, the
reader can grasp the differences and similarities among the models and evaluate their
effectiveness in capturing the efficiency of the DMUs.

Furthermore, the proposed approach in the examples introduces the concept of
nearest interval approximation, which allows decision units with fuzzy information
to be attributed to an interval. This approach aims to provide continuity, uniformity,
and linearity in the assessment process.

Example 4.9. The example presented demonstrates the practical application of in-
terval efficiency analysis in evaluating the performance of manufacturing industries.
By using interval inputs and output, decision-makers can gain valuable insights into
the efficiency of different units within the industry. This numerical example was
used by Wang et al. [10]. The information for the numerical example contains 7

26



Rahimi et al. /Ann. Fuzzy Math. Inform. x (201y), No. x, xxx–xxx

DMUs with two interval inputs and one interval output, which is presented in Table
4.9. The data is from seven manufacturing industries that participated in different
cities to evaluate the performance with regard to capital and labor as inputs and
gross production value as output.

Table 6. Wang et al.’s data (2005)

Input Output
DMU Capital Labor Gross output value

1 [564403, 621755] [674111, 743281] [806549, 866063]
2 [614371, 669665] [685943, 742345] [917507, 985424]
3 [762203, 798427] [762207, 805677] [1117142, 1195562]
4 [862016, 937044] [779894, 846496] [1206179, 1261031]
5 [1016898, 1082662] [799714, 877137] [1381315, 1462543]
6 [1164350, 1267970] [807172, 889416] [1497679, 1652787]
7 [1731916, 1816008] [818090, 895746] [1702249, 1812655]

Wang et al. (2005) solved the models with weights higher than ε = 10−10. There
are drawbacks to some of the results presented in Table 4.8 of Wang’s article. There-
fore, all of the models are presented with weights higher than ε = 10−10 in this
numerical example, and the results are as follows:

For Despotis and Smirlis’s model, the results are presented in the second column
of Table 4.9. The results show that all DMUs (DMU1-DMU7) are weak interval
efficiency. The third column of Table 4.9 shows the interval efficiency results based
on Wang’s model. In this column, DMUs{2, 3, 6, 7} are weak interval efficiency, and
the other DMUs are interval inefficiency. The results of solving the models are pre-
sented in the fourth column of Table 4.9, in which DMUs{3, 6, 7} are strong interval
efficiency while DMU2 is weak interval efficiency. In this numerical example, we use
the secondary goal for DMUs{4, 5}. In other words, the lower boundary efficiency
is higher than the upper boundary efficiency in these two DMUs, and with respect
to theorem q5, the lower boundary efficiency is assumed to be equal to the upper
boundary efficiency. Also, the results of these three views show θ̌∗o ≤ Ȟ∗o ≤ Ž∗o
and θ̂∗o = Ẑ∗o ≤ Ĥ∗o . For the results of our proposed approach, efficient DMUs are
ranked, and the results of the ranking are presented in Table 4.9.

Table 4.9 presents the ranking of the interval efficiencies for the seven DMUs
based on the proposed approach. The ranking is determined using the marked
distance (d∗) from the proposed approach. DMU 7 achieves the highest ranking,
followed by DMU 6, DMU 3, and DMU 2.

In summary, Example 4.9 showcases the evaluation of manufacturing industries
using interval inputs and output. Different models are applied to assess the interval
efficiency of the DMUs, and the results are compared. The proposed approach
provides a ranking of the efficient DMUs based on their interval efficiencies, allowing
decision-makers to identify the best-performing units.
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Table 7. Interval efficiency Results by Wang et al.’s data (2005)

DMU [Ȟ∗o , Ĥ
∗
o ] [θ̌∗o , θ̂

∗
o ] [Ž∗o , Ẑ

∗
o ]

DMU1 [0.8088, 1.0000] [0.8088, 0.9567] [0.9271, 0.9567]
DMU2 [0.8735, 1.0000] [0.8555, 1.0000] [0.9792, 1.0000]
DMU3 [0.8986, 1.0000] [0.8986, 1.0000] [0.1.0000, 1.0000]
DMU4 [0.8460, 1.0000] [0.8460, 0.9610] [0.9610, 0.9610]
DMU5 [0.8642, 1.0000] [0.8642, 0.9819] [0.9819, 0.9819]
DMU6 [0.8866, 1.0000] [0.8866, 1.0000] [1.0000, 1.0000]
DMU7 [0.9280, 1.0000] [0.8664, 1.0000] [1.0000, 1.0000]

Table 8. Compare and rank the interval efficiencies of the seven DMUs

DMU [SŽ∗o , SẐ
∗
o ] d∗ Rank

DMU2 [0.9792, 1.0000] 0.9896 4
DMU3 [1.0099, 1.0099] 1.0092 3
DMU6 [1.0185, 1.0737] 1.0461 2
DMU7 [1.0820, 1.0820] 1.0820 1

By presenting the numerical example and its results, you can consider interval
efficiency analysis as a valuable tool for evaluating and benchmarking the perfor-
mance of manufacturing industries. The example highlights the importance of using
interval inputs and output in capturing the inherent uncertainty and variability in
real-world scenarios. The ranking of efficient DMUs provides a practical and ac-
tionable way to assess performance and identify areas for improvement, ultimately
contributing to informed decision-making and enhancing overall industry efficiency.

Example 4.10. This numerical example is taken from Saati et al. (2002). Data
for this numerical example containing ten DMUs with two fuzzy inputs and two
fuzzy outputs are expressed in Table 4.9. In this example, unlike Example 4.9, the
asymmetric triangular fuzzy numbers are considered.

The results of interval efficiency for 10 DMUs are presented in Table 4.10. The
interval efficiency of Wang’s model, Despotis and Smirlis’ model, and our model
are in columns 2, 3, and 4, respectively. The results of our approach show that
DMUs{1, 2, 10} are strong interval efficiency, while in Despotis and Smirlis’s model,
DMU2 is strong interval efficiency, and DMUs{1, 10} are weak interval efficiency.
In addition, in Wang’s model, DMUs{1, 2, 10} are weak interval efficiency. In this

example, on the other hand, θ̌∗o ≤ Ȟ∗o ≤ Ž∗o and θ̂∗o = Ẑ∗o ≤ Ĥ∗o are established for
DMUs. Table 4.10 shows the ranking results, for Example 4.10.

In summary, Example 4.10 showcases the application of fuzzy inputs and fuzzy
outputs in assessing the efficiency of DMUs. The use of asymmetric triangular
fuzzy numbers adds a level of uncertainty representation in the analysis. The in-
terval efficiency results obtained from different models highlight the variations in

28



Rahimi et al. /Ann. Fuzzy Math. Inform. x (201y), No. x, xxx–xxx

Table 9. Saati et al.’s data (2002)

Data Input1 Input2 Output1 Output2

DMU1 (6, 7, 8) (29, 30, 32) (35.5, 38, 41) (409, 411, 416)

DMU2 (5.5, 6, 6.5) (33, 35, 36.5) (39, 40, 43) (478, 480, 484)

DMU3 (7.5, 9, 10.5) (43, 45, 48) (32, 35, 38) (297, 299, 301)

DMU4 (7, 8, 10) (37.5, 39, 42) (28, 31, 31) (347, 352, 360)

DMU5 (9, 11, 12) (43, 44, 45) (33, 35, 38) (406, 411, 415)

DMU6 (10, 10, 10) (53, 55, 57.5) (36, 38, 40) (282, 286, 289)

DMU7 (10, 12, 14) (107, 110, 113) (34.5, 36, 38) (396, 400, 405)

DMU8 (9, 13, 16) (95, 100, 101) (37, 41, 46) (387, 393, 402)

DMU9 (12, 14, 15) (120, 125, 131) (24, 27, 28) (400, 404, 406)

DMU10 (5, 8, 10) (35, 38, 39) (48, 50, 51) (470, 470, 470)

Table 10. Interval efficiency Results by Saati et al.’s data (2002)

Data [Ȟ∗o , Ĥ
∗
o ] [θ̌∗o , θ̂

∗
o ] [Ž∗o , Ẑ

∗
o ]

DMU1 [0.9485, 1.0000] [0.9369, 1.0000] [1.0000, 1.0000]
DMU2 [1.0000, 1.0000] [0.9451, 1.0000] [1.0000, 1.0000]
DMU3 [0.5207, 0.7270] [0.5207, 0.5996] [0.5983, 0.5996]
DMU4 [0.6087, 0.7067] [0.6087, 0.6573] [0.6463, 0.6573]
DMU5 [0.6475, 0.7164] [0.6475, 0.6716] [0.6716, 0.6716]
DMU6 [0.4762, 0.6367] [0.4762, 0.5220] [0.5220, 0.5220]
DMU7 [0.3720, 0.5322] [0.3720, 0.4555] [0.4290, 0.4555]
DMU8 [0.3541, 0.6555] [0.3541, 0.5332] [0.4256, 0.5332]
DMU9 [0.3307, 0.4065] [0.3307, 0.3716] [0.3617, 0.3716]
DMU10 [0.9505, 1.0000] [0.9274, 1.0000] [1.0000, 1.0000]

classification. The ranking of DMUs based on the proposed approach provides
decision-makers with insights into the relative performance of the units. Overall, this
example demonstrates the potential of interval efficiency analysis in fuzzy decision-
making contexts and its relevance in real-world scenarios.
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Table 11. compare and rank the interval efficiencies of the ten DMUs

DMU [SŽ∗o , SẐ
∗
o ] d∗ Rank

DMU1 [1.0188, 1.0328] 1.0258 3
DMU2 [1.1593, 1.1593] 1.1593 1
DMU10 [1.0826, 1.1146] 1.0986 2

5. DEA model with possibility and necessity measures

Simultaneously with the formation of fuzzy logic, mathematical theories are in-
vented and developed to understand and identify aspects of uncertainty in the de-
cision environment and its possible outcomes. In possibility programming models,
each fuzzy parameter is considered as a fuzzy variable, and each fuzzy constraint is
considered as a fuzzy event. In the possibility theory, the possibility degree of each
fuzzy event is calculated. The possibility theory is closely related to the theory of
random sets and confidence intervals in a way that provides the simplest and most
widely used structure and framework for statistical reasoning with probability dis-
tributions. In addition, it is considered a tool to propagate uncertainty in problems
with limited subjective information or statistics. In fact, possibility theory should
be considered as the regulator between fuzzy and possible sets. The theory of pos-
sibility has received the attention of a large number of researchers and has been
used in various and wide fields of science with uncertain and ambiguous data. For
this reason, it has many relative advantages compared to other events in the face of
uncertain and ambiguous data.

Despite the advantages that we have listed in using the theory of possibility in
fuzzy logic, the use of the theory of possibility in fuzzy logic and because of one of
the main challenges in this research, we tried to calculate the efficiency of decision-
making units with fuzzy data, then NesPCCR models and NesDCCR is used for
calculation. On the other hand, since the theory of possibility makes the problems
more realistic, as a result, the combination of DEA models with fuzzy problems
based on the theory of possibility will improve the performance and efficiency of
other models.

In this article, considering that the theory of possibility makes problems more
realistic, the combination of fuzzy DEA models based on the theory of possibility
improves the performance and efficiency of fuzzy DEA models. In this section, we
present a new possibility approach to solving fuzzy DEA models. This approach
offers a solution to confront the uncertainty of fuzzy goals and constraints through
possibility and necessity measures. The necessity (Nes) and possibility (Pos) mea-
sures are dual to each other. Using the concept of possibility and necessity of the
fuzzy event, the fuzzy CCR model converts to the possibility and necessity CCR
model. First, we describe the possibility and necessity CCR models for the primal
CCR model:
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(PosCCR DEA)

min θ

s.t. Pos(
n∑
j=1

λj x̃ij ≤ θx̃io) ≥ βi i = 1, 2, · · · ,m,

Pos(
n∑
j=1

λj ỹrj ≥ ỹro) ≥ αr r = 1, 2, · · · , s,

λj ≥ 0 j = 1, 2, · · · , n,
θ free.

(5.1)

(NesCCR DEA)

min θ

s.t. Nes(
n∑
j=1

λj x̃ij − θx̃io ≤ 0) ≥ βi i = 1, 2, · · · ,m,

Pos(
n∑
j=1

λj ỹrj − ỹro ≥ 0) ≥ αr r = 1, 2, · · · , s,

λj ≥ 0 j = 1, 2, · · · , n,
θ free.

(5.2)

In the above models, βi and αi(i = 1, · · · ,m; r = 1, · · · , s) denote the minimum
possibility level for the first and second constraints of the model 5.1, respectively.
βi and αi present the minimum necessity level for the first and second constraints
of the model 5.2, respectively.

The possibility and necessity CCR model for dual CCR is as follows:

(PosCCR DEA)

max φ

s.t. Pos(
s∑
r=1

urỹro ≥ φ) ≥ βo

Pos(
m∑
r=1

vix̃io = 1) ≥ αo i = 1, 2, · · · ,m,

Pos(
s∑
r=1

urỹrj −
m∑
r=1

vix̃ij ≤ 0) ≥ αj j = 1, 2, · · · , n,

ur ≥ 0 r = 1, 2, · · · , s,
vi ≥ 0 i = 1, 2, · · · ,m,

(5.3)

(NesCCR DEA)

max φ

s.t. Nes(
s∑
r=1

urỹro ≥ φ) ≥ βo

Nes(
m∑
r=1

vix̃io = 1) ≥ αo i = 1, 2, · · · ,m,

Nes(
s∑
r=1

urỹrj −
m∑
r=1

vix̃ij ≤ 0) ≥ αj j = 1, 2, · · · , n,

ur ≥ 0 r = 1, 2, · · · , s,
vi ≥ 0 i = 1, 2, · · · ,m.

(5.4)
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In the above models, βo, αo, and αj are the minimum possibility level for the first,
second, and third constraints of the models 5.3 and 5.4, respectively. The interpre-
tation of the PosCCR model is that the objective function φ must be maximized so

that the
s∑
r=1

urỹro function can reach the minimum level of possibility βo or higher

so that the second and third constraints have the minimum level of possibility αo,
and αj , respectively. The interpretation of the NesCCR model is also the same.

Because of the dual relationship between the possibility and necessity measures,
we can solve the PosCCR and NesCCR models by implementing the same meth-
ods. Suppose that all of the fuzzy inputs and outputs are determined by x̃ij =
(x1
ij , x

2
ij , x

3
ij) and ỹij = (y1

ij , y
2
ij , y

3
ij) that for i = 1, · · · ,m and r = 1, · · · , s, x1

ij ≥ 0

and y1
ij ≥ 0. By using Lemmas ?? and 2.11 and given that the fuzzy inputs and

outputs are the triangular fuzzy numbers, PosCCR and NesCCR models convert to
the following linear programming models.

(PosCCR DEA)
(5.5)
min θ

s.t. θx2
io

n∑
j=1

λjx
2
ij ≤ (βi − 1)(

n∑
j=1

λj(x
2
ij − x1

ij) + θ(x3
io − x2

io) i = 1, 2, · · · ,m,
n∑
j=1

λjy
2
rj − y2

ro ≥ (αr − 1)((y3
ro − y2

ro) +
n∑
j=1

λj(y
3
rj − y2

rj)) r = 1, 2, · · · , s,

λj ≥ 0 j = 1, 2, · · · , n,
θ free.

(PosCCR DEA)
(5.6)
min θ

s.t. ,
n∑
j=1

λjx
1
ij − θx1

io + βi(
n∑
j=1

λj(x
2
ij − x1

ij)− θ(x2
io − x1

io) ≤ 0 i = 1, 2, · · · ,m,
n∑
j=1

λjy
3
rj − y3

ro − αr(
n∑
j=1

λj(y
3
rj − y2

rj)− (y3
ro − y2

ro) ≥ 0 r = 1, 2, · · · , s,

λj ≥ 0 j = 1, 2, · · · , n,
θ free.

(NesCCR DEA)
(5.7)
min θ

s.t. ,
n∑
j=1

λjx
2
ij − θx2

io + βi(
n∑
j=1

λj(x
3
ij − x2

ij)− θ(x3
io − x2

io) ≤ 0 i = 1, 2, · · · ,m,
n∑
j=1

λjy
2
rj − y2

ro − αr(
n∑
j=1

λj(y
2
rj − y1

rj)− (y2
ro − y1

ro) ≥ 0 r = 1, 2, · · · , s,

λj ≥ 0 j = 1, 2, · · · , n,
θ free.

For the dual CCR, we have the above approach:
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(PosCCR DEA)

max φ

s.t.
s∑
r=1

ury
3
ro − βo(

s∑
r=1

ur(y
3
ro − y2

ro)) ≤ φ
m∑
i=1

vix
1
io + αo(

m∑
i=1

vi(x
2
io − x1

io)) ≤ 1 i = 1, 2, · · · ,m,
m∑
i=1

vix
3
io − αo(

m∑
i=1

vi(x
3
io − x2

io)) ≥ 1 i = 1, 2, · · · ,m,
s∑
r=1

ury
1
rj −

m∑
i=1

vix
1
ij + αj(

s∑
r=1

ur(y
2
rj − y1

rj)−
m∑
i=1

vi(x
2
ij − x1

ij)) ≤ 0

ur ≥ 0 r = 1, 2, · · · , s,
vi ≥ 0 i = 1, 2, · · · ,m,

(5.8)

(NesCCR DEA)

max φ

s.t.
s∑
r=1

ury
2
ro − βo(

s∑
r=1

ur(y
2
ro − y1

ro)) ≤ φ
m∑
i=1

vix
2
io + αo(

m∑
i=1

vi(x
3
io − x2

io)) ≤ 1 i = 1, 2, · · · ,m,
m∑
i=1

vix
2
io − αo(

m∑
i=1

vi(x
2
io − x1

io)) ≥ 1 i = 1, 2, · · · ,m,
s∑
r=1

ury
2
rj −

m∑
i=1

vix
2
ij + αj(

s∑
r=1

ur(y
3
rj − y2

rj)−
m∑
i=1

vi(x
3
ij − x2

ij)) ≤ 0

ur ≥ 0 r = 1, 2, · · · , s,
vi ≥ 0 i = 1, 2, · · · ,m,

(5.9)

This article introduces a new approach to solving fuzzy Data Envelopment Anal-
ysis (DEA) models by combining fuzzy DEA models with the theory of possibility.
This combination enhances realism and improves the performance and efficiency of
fuzzy DEA models. The proposed approach addresses the uncertainty associated
with fuzzy goals and constraints through the use of possibility and necessity mea-
sures. The necessity and possibility measures are duals of each other, providing a
comprehensive framework for dealing with fuzzy events. By employing the concept
of possibility and necessity, the traditional fuzzy CCR model is transformed into a
possibility and necessity CCR model.

The article presents linear programming models for the possibility and necessity
CCR models, both for primal and dual CCR. These models involve minimum possi-
bility levels (β) and minimum necessity levels (α) as constraints, which ensure that
the fuzzy constraints are satisfied at the specified levels. The objective is to optimize
the objective function (θ orφ) while meeting the given constraints.

Moreover, the article demonstrates that the possibility and necessity CCR models
can be solved using the same methods due to the dual relationship between the
possibility and necessity measures. They provide specific linear programming models
for solving PosCCR and NesCCR models when the fuzzy inputs and outputs are
represented by triangular fuzzy numbers.

Overall, this article introduces a novel approach that incorporates the theory of
possibility into fuzzy DEA models, leading to more realistic and efficient solutions.
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By addressing the uncertainty inherent in fuzzy goals and constraints, this approach
offers a valuable contribution to the field of DEA. Researchers and practitioners
interested in enhancing the performance and efficiency of fuzzy DEA models should
consider exploring the possibilities offered by this innovative approach.

5.1. Numerical example. We explain the proposed Method with a numerical ex-
ample. Data are presented in Table 4.8 [28], which includes five DMUs with two
fuzzy inputs and two fuzzy outputs. The fuzzy inputs and outputs are considered
symmetric triangular fuzzy numbers, a special form of triangular fuzzy numbers.
Now, we want to examine the solution of the DEA model. In this example, all fuzzy
constraints in primal and dual models are considered with the same level of possi-
bility and necessity at five levels (0, 0.25, 0.5, 0.75, 1). The results can be interpreted
as follows:

Table 12. Tanaka and Gue data (2001)

DMU DMU1 DMU2 DMU3 DMU4 DMU5

Input1 (3.5, 4.0, 4.5) (2.9, 2.9, 2.9) (4.4, 4.9, 5.4) (3.4, 4.1, 4.8) (5.9, 6.5, 7.1)

Input2 (1.9, 2.1, 2.3) (1.4, 1.5, 1.6) (2.2, 2.6, 3.0) (2.2, 2.3, 2.4) (3.6, 4.1, 4.6)

Output1 (2.4, 2.6, 2.8) (2.2, 2.2, 2.2) (2.7, 3.2, 3.7) (2.5, 2.9, 3.3) (4.4, 5.1, 5.8)

Output2 (3.8, 4.1, 4.4) (3.3, 3.5, 3.7) (4.3, 5.1, 5.9) (5.5, 5.7, 5.9 (6.5, 7.4, 8.3)

Table 5.1 presents the efficiency results of five DMU with the model (5.1) or the
possibility of multiple model at different levels. At a possibility level of 0.75, the
efficiency values of DMU1’s and DMU2’s possibility are 0.9024 and 1.0214, respec-
tively. This means that with the possibility level of 0.75, DMU1 is an inefficient
DMU, while DMU2 is an efficient DMU. In Table 5.1, DMU2, DMU4, and DMU5
are efficient DMUs, while DMU1 and DMU3 are inefficient DMUs at some of the
possibility levels.

Table 5.1 shows the efficiency results for the possibility envelopment model (model
(5.1)). The efficiency results of this section reveal that DMU2, DMU4, and DMU5,
like for the possibility of multiple model, are efficient DMUs at all levels. It shows
which DMUs are efficient at different possibility levels.

Due to the dual relationship between possibility and necessity measures, we solved
the NesPCCR and NesDCCR models. The efficiency of DMUs can be defined by
the same Method using the possibility approach. Since the tips are repeated here,
we have removed the details. Table 5.1 shows the efficiency results of the necessity
multiple model (model (5.1)) using the data from Table 5.1. In this Table, DMU2,
DMU4, and DMU5 have necessity efficiency at some of the necessity levels, while
DMU1 and DMU3 do not have any necessity efficiency at all levels. Table 5.1 shows
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Table 13. Results of efficiency values with the possibility of mul-
tiple model

α DMU1 DMU2 DMU3 DMU4 DMU5

0 1.0580 1.0994 1.1256 1.2961 1.2958

0.25 1.0035 1.0716 1.0467 1.2053 1.2256

0.5 0.9518 1.0455 0.9828 1.1257 1.1474

0.75 0.9024 1.0214 0.9212 1.0570 1.0711

1 0.8556 1.0000 0.8613 1.0000 1.0000

Table 14. Results of efficiency values with possibility envelopment model

α DMU1 DMU2 DMU3 DMU4 DMU5

0 0.9030 1.0000 1.0000 1.0000 1.0000

0.25 0.9216 1.0000 1.0000 1.0000 1.0000

0.5 0.9126 1.0000 0.9587 1.0000 1.0000

0.75 0.8892 1.0000 0.9094 1.0000 1.0000

1 0.8556 1.0000 0.8613 1.0000 1.0000

the efficiency results for the necessity envelopment model (model 5.2) at different
levels. The results of the necessity approach are the same as the possibility approach.
That is, as the necessity level increases, the values of DMUs decrease. Also, the
efficiency value for the necessity approach is less than it for the possibility approach.

The motivation for the reader lies in understanding and interpreting the efficiency
results of the DMUs using the proposed Method. By studying these results, read-
ers can gain insights into the efficiency levels of the DMUs and observe how the
values change across different levels of possibility and necessity. This analysis pro-
vides a deeper understanding of the proposed Method’s capabilities and its potential
application in evaluating the efficiency of DMUs in various contexts.

The decision on which DEA models based on possibility and necessity approaches
to use depends on several factors, including the specific objectives of the analysis, the
nature of the decision problem, and the preferences of the decision-makers. Here’s
a breakdown of considerations for managers.
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Table 15. Results of efficiency values with necessity multiple model

α DMU1 DMU2 DMU3 DMU4 DMU5

0 0.8556 1.0000 0.8613 1.0000 1.0000

0.25 0.8514 1.0000 0.8398 0.9839 0.9369

0.5 0.8215 1.0000 0.8190 0.9668 0.8740

0.75 0.8090 0.9934 0.7901 0.9497 0.8370

1 0.7818 0.9645 0.7304 0.9329 0.7644

Table 16. Results of efficiency values with necessity envelopment model

α DMU1 DMU2 DMU3 DMU4 DMU5

0 0.8556 1.0000 0.8613 1.0000 1.0000

0.25 0.8258 1.0000 0.8138 1.0000 0.9762

0.5 0.8129 1.0000 0.7722 1.0000 0.9208

0.75 0.8003 1.0000 0.73424 1.0000 0.8677

1 0.7878 1.0000 0.6989 1.0000 0.8169

1. Possibility Approach:
· Use the possibility-based DEA models when the focus is on identifying op-

portunities for improvement or efficiency enhancement.
· This approach is suitable for situations where decision-makers are more con-

cerned about maximizing potential performance or exploring the boundaries of what
is achievable.

· Managers might prefer this approach when they have flexibility to explore
various scenarios and strategies for performance enhancement.

2. Necessity Approach:
· Employ necessity-based DEA models when the emphasis is on identifying

essential constraints or minimum requirements for performance.
· This approach is appropriate for situations where decision-makers need to

ensure compliance with certain standards or regulations, or where resources are
limited and need to be allocated efficiently.
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·Managers might favor this approach when they need to identify critical factors
that must be addressed to avoid inefficiencies or failures.

3. Combined Use:
· Consider using both possibility and necessity-based DEA models in tandem

to gain a comprehensive understanding of performance and resource allocation.
· The combined use of these approaches can provide a balanced perspective,

highlighting both opportunities for improvement and critical constraints.
· Managers might opt for this approach when they need a holistic view of per-

formance that takes into account both aspirational goals and practical constraints.
Ultimately, the choice between possibility and necessity-based DEA models, or

their combination, should be guided by the specific context and objectives of the
managerial decision-making problem. Managers should carefully evaluate the trade-
offs and implications of each approach and select the most appropriate model or
combination of models to support their decision-making process.

6. Conclusion

The current article is presented with a suggested approach to complete the previ-
ous articles and to obtain more detailed information or a different perspective on the
issues and results. Due to the lack of complete knowledge and information, precise
mathematics is not enough for modeling a complex system. In the current article, the
DEA model with fuzzy coefficients is taken into account. We propose an approach
to transform this problem into an interval linear programming model based on the
approximation of the nearest interval. Therefore, the fuzzy DEA model is trans-
formed into two conventional DEA models according to the technique used, which
shows the efficiency as the interval efficiency. The proposed approach demonstrates
its effectiveness through a comparison with other models, showcasing its robustness
and practicality. Also, we compared the proposed approach with the other models,
and a symptomatic interval-based ranking method is presented, which makes the
approach to be more robust and practical.

Additionally, the article explores the possibility approach for solving fuzzy DEA,
defining fuzzy events through possibility and necessity measures. The comparison
between the possibility and necessity approaches reveals their distinct aspects, with
the necessity approach offering a more pessimistic efficiency value, while the pos-
sibility approach presents a more optimistic perspective for each DMU. This dual
relationship between possibility and necessity measures enhances our understanding
of efficiency in fuzzy DEA models. In this study, when the fuzzy inputs and outputs
data are fuzzy L-R and trapezoidal numbers, the fuzzy DEA models are converted
to linear programming models with the minimum level of possibility and necessity.
We compare the results of the possibility approach for primal-CCR and dual-CCR
models with the necessity approach for primal-CCR and dual-CCR models. As the
results show, some DMU is efficient with the possibility approach, while others are
inefficient with the necessity approach. This reveals that the necessity approach
offers the efficiency value, which is the pessimistic aspect for each DMU, and the
possibility approach offers the efficiency value, which is the optimistic aspect for
each DMU. In other words, due to the dual relationship between the possibility and
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necessity measures, the efficiency value for the necessity approach is less than for
the possibility approach.

By considering both the technical transformations and the philosophical implica-
tions of the proposed approaches, this article paves the way for future research in
the field of modeling complex systems. It motivates readers to embrace a multidi-
mensional perspective that encompasses uncertainty, imprecision, and the inherent
duality of possibility and necessity. Ultimately, this article encourages researchers
and practitioners to adopt innovative methodologies that can address the challenges
posed by complex systems, leading to more accurate and comprehensive analyses in
various domains.
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